首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   26篇
  国内免费   23篇
  2023年   3篇
  2022年   7篇
  2021年   7篇
  2020年   10篇
  2019年   10篇
  2018年   7篇
  2017年   16篇
  2016年   9篇
  2015年   15篇
  2014年   15篇
  2013年   14篇
  2012年   13篇
  2011年   18篇
  2010年   6篇
  2009年   21篇
  2008年   20篇
  2007年   21篇
  2006年   20篇
  2005年   12篇
  2004年   9篇
  2003年   22篇
  2002年   12篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   1篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1976年   1篇
  1975年   2篇
排序方式: 共有386条查询结果,搜索用时 73 毫秒
31.
The ecological and genetic factors determining the extent of introgression between species in secondary contact zones remain poorly understood. Here, we investigate the relative importance of isolating barriers and the demographic expansion of invasive Mytilus galloprovincialis on the magnitude and the direction of introgression with the native Mytilus trossulus in a hybrid zone in central California. We use double‐digest restriction‐site‐associated DNA sequencing (ddRADseq) to genotype 1337 randomly selected single nucleotide polymorphisms and accurately distinguish early and advanced generation hybrids for the first time in the central California Mytilus spp. hybrid zone. Weak levels of introgression were observed in both directions but were slightly more prevalent from the native M. trossulus into the invasive M. galloprovincialis. Few early and advanced backcrossed individuals were observed across the hybrid zone confirming the presence of strong barriers to interbreeding. Heterogeneous patterns of admixture across the zone of contact were consistent with the colonization history of M. galloprovincialis with more extensive introgression in northern localities furthest away from the putative site of introduction in southern California. These observations reinforce the importance of dynamic spatial and demographic expansions in determining patterns of introgression between close congeners, even in those with high dispersal potential and well‐developed reproductive barriers. Our results suggest that the threat posed by invasive M. galloprovincialis is more ecological than genetic as it has displaced, and continues to displace the native M. trossulus from much of central and southern California.  相似文献   
32.
With about 800 Recent species, ‘miters’ are a widely distributed group of tropical and subtropical gastropods that are most diverse in the Indo‐West Pacific. They include the two families Mitridae and Costellariidae, similar in shell morphology and traditionally treated as close relatives. Some genera of deep‐water Ptychatractidae and Volutomitridae are close to miters in shell morphology, and the term ‘mitriform gastropods’ has been introduced to refer to Mitridae, Costellariidae, and this assortment of convergent forms. The present study aimed at the reconstruction of phylogenetic relationships of mitriform gastropods based on representative taxon sampling. Four genetic markers [cytochrome c oxidase subunit I (COI), 16S and 12S rRNA mitochondrial genes, and H3 (Histone 3) nuclear gene] were sequenced for over 90 species in 20 genera, and the molecular data set was supplemented by studies of radula morphology. Our analysis recovered Mitridae as a monophyletic group, whereas the genus Mitra was found to be polyphyletic. Of 42 mitrid species included in the analysis, 37 formed a well‐supported ‘core Mitridae’ consisting of four major clades, three of them consistent with the subfamilies Cylindromitrinae, Imbricariinae, and Mitrinae, and Strigatella paupercula standing out by itself. Basal to the ‘core Mitridae’ are four minor lineages, with the genus Charitodoron recognized as sister group to all other Mitridae. The deep‐water family Pyramimitridae shows a sister relationship to the Mitridae, with high support for a Pyramimitridae + Mitridae clade. Our results recover the monophyly of the Costellariidae, which form a well‐supported clade that also includes Ptychatractidae, Columbariinae, and Volutomitridae, but not Mitridae. Most derived and diverse amongst Costellariidae are species of Vexillum, characterized by a bow‐shaped, multicuspidate rachidian tooth. Several previously unrecognized deep‐water costellariid lineages are revealed. Their members retain some plesiomorphies – in particular a tricuspidate rachidian tooth – that makes them morphologically intermediate between ptychatractids and Vexillum. The taxa of Ptychatractidae included in the analysis are not monophyletic, but form three well‐supported, unrelated groupings, corresponding respectively to Ceratoxancus + Latiromitra, Exilia, and Exiliodea. None of them shows an affinity to Pseudolividae. © 2015 The Linnean Society of London  相似文献   
33.
We introduce a measure of Environmental Consistency (ECo), which assesses the probability of reducing homogeneity in the environmental factors within a species’ distribution by randomly displacing its occurrences. ECo is computed by applying null model analysis to a species incidence matrix where each locality is associated with a set of environmental values. Environmental homogeneity is measured, for each species, as the average multiparametric distance between any pair of localities where the species occurs. ECo can account for the effect of species interactions and resource availability by using different null models that permit or forbid occurrence displacements altering species local abundance or species prevalence. ECo provides researchers with a flexible statistical framework to address a wide range of ecological and biogeographical issues. We investigated in depth the properties and the potentialities of ECo, showing how it integrates the concepts of Eltonian and Grinnelian niches. We demonstrate that a close relationship exists between niche breadth at species level and environmental consistency of species assemblages. In addition, we provide evidence that ecological consistency is closely related to species range. A software to compute ECo is freely available at http://forest.jrc.ec.europa.eu/download/software/eco.  相似文献   
34.
Allan E  Crawley MJ 《Ecology letters》2011,14(12):1246-1253
The importance of invertebrate herbivores in regulating plant communities remains unclear, due to the absence of long-term exclusion experiments. An experiment in an English grassland involving long-term exclusions of insect and mollusc herbivores, along with rabbit fencing, showed strong, but opposing, effects of the invertebrate herbivores. Plant species richness declined and biomass increased following insect exclusion, due to increased dominance by a grass species, whereas mollusc exclusion led to increased herbs abundance. The two herbivores had a compensatory interaction: molluscs had no effects in the absence of insects and large insect effects depended on the absence of molluscs. The effects of invertebrate exclusion became apparent only after 8 years, and would have been seriously underestimated in shorter studies. Our results suggest that theorists and conservation managers need to shift from their historic focus on vertebrate herbivory, to a recognition that invertebrates can be equally important drivers of plant community structure.  相似文献   
35.
36.
Interpreting,measuring, and modeling soil respiration   总被引:32,自引:0,他引:32  
This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of ecosystem respiration. Because autotrophic and heterotrophic activity belowground is controlled by substrate availability, soil respiration is strongly linked to plant metabolism, photosynthesis and litterfall. This link dominates both base rates and short-term fluctuations in soil respiration and suggests many roles for soil respiration as an indicator of ecosystem metabolism. However, the strong links between above and belowground processes complicate using soil respiration to understand changes in ecosystem carbon storage. Root and associated mycorrhizal respiration produce roughly half of soil respiration, with much of the remainder derived from decomposition of recently produced root and leaf litter. Changes in the carbon stored in the soil generally contribute little to soil respiration, but these changes, together with shifts in plant carbon allocation, determine ecosystem carbon storage belowground and its exchange with the atmosphere. Identifying the small signal from changes in large, slow carbon pools in flux dominated by decomposition of recent material and autotrophic and mycorrhizal respiration is a significant challenge. A mechanistic understanding of the belowground carbon cycle and of the response of different components to the environment will aid in identifying this signal. Our workshop identified information needs to help build that understanding: (1) the mechanisms that control the coupling of canopy and belowground processes; (2) the responses of root and heterotrophic respiration to environment; (3) plant carbon allocation patterns, particularly in different forest developmental stages, and in response to treatments (warming, CO2, nitrogen additions); and (4) coupling measurements of soil respiration with aboveground processes and changes in soil carbon. Multi-factor experiments need to be sufficiently long to allow the systems to adjust to the treatments. New technologies will be necessary to reduce uncertainty in estimates of carbon allocation, soil carbon pool sizes, and different responses of roots and microbes to environmental conditions.  相似文献   
37.
Limnoperna fortunei is a freshwater bivalve that invaded South America through Río de la Plata estuary in 1989 and has since become a major macrofouling pest. Along the Paraná-Paraguay waterway, which hosts intense boat traffic, L. fortunei has moved upstream at an average rate of of 250 km per year. In contrast, along the Uruguay river, where boat traffic is restricted to the lowermost 200 km section, upstream colonization is almost 10-times slower. This suggests that attachment to vessels is by far the most important dispersion mechanism. It is suggested that the Amazon, Orinoco and Magdalena basins are under high risk of invasion by this mussel, especially through their estuarine gateways. All South American basins host innumerable water bodies with favorable conditions for L. fortunei’s colonization. Known ecological tolerance limits of the mussel also suggest that it may colonize much of the area from Central America to Canada, including waters that due to their low calcium contents, high temperature and pollution levels, and low oxygen are inadequate for the survival of Dreissena polymorpha. Despite it’s remarkable geographic expansion and its extremely high population densities, L. fortunei’s ecological effects have received very little attention so far. It is suggested that the 2.4-fold increase in Argentine landings of freshwater fish between 1992–1993 and 2000–2001 may be associated with the introduction of this prey species.  相似文献   
38.
39.
Fungal communities on decaying culms of a bamboo host (Phyllostachys bambusoides) from freshwater and adjacent terrestrial habitats were identified. Collections were made at Xiao Bai Long Mountain, Yiliang, Yunnan, China in the winter and summer. In each collection, 100 similar-sized bamboo culms were collected, comprising 50 submerged samples from a stream and 50 terrestrial samples from adjacent riparian vegetation. A total of 82 fungal taxa were recorded from the samples, including 30 ascomycetes and 52 anamorphic fungi. The frequency of occurrence of these fungi were recorded and the Shannon–Weiner indices (H′) were applied to evaluate fungal diversity. The results showed that variation of the fungal diversity between the summer and winter collections was insignificant (0.2<p<0.5). Fungal diversity on submerged bamboo however, was significantly higher than that on terrestrial bamboo (p<0.001). Further findings were that: (1) some commonly recorded freshwater and terrestrial taxa were found in both habitats, but overall there were only 15 overlapping species between the two habitats; (2) the dominant species in each habitat were considerably different, and (3) only a few fungi were dominant, while most species were rare, being recorded only once or twice. Factors responsible for the distribution patterns and variations in composition of the fungal communities are discussed.  相似文献   
40.
Aim Since the opening of the Suez Canal in 1869, many tropical taxa from the Indo‐West Pacific (IWP) realm have entered the Mediterranean Sea, which is experiencing rising temperatures. My aims are: (1) to compare biogeographically this tropical transformation of the Mediterranean biota with the tropical faunas of the Mediterranean and adjacent southern European and West African seas during the Late Oligocene to Pliocene interval; (2) to infer the relative contributions of the tropical eastern Atlantic and IWP to the tropical component of the marine biota in southern Europe; and (3) to understand why West Africa is not now a major source of warm‐water species. Location Southern Europe, including the Mediterranean Sea, and the coast of tropical West Africa. Methods I surveyed the literature on fossil and living shell‐bearing molluscs to infer the sources and fates of tropical subgenus‐level taxa living in southern Europe and West Africa during the Late Oligocene to Pliocene interval. Results Ninety‐four taxa disappeared from the tropical eastern Atlantic (including the Mediterranean) but persisted elsewhere in the tropics, mainly in the IWP (81 taxa, 86%) and to a lesser extent in tropical America (36 taxa, 38%). Nine taxa inferred to have arrived in the tropical eastern Atlantic from the west after the Pliocene did not enter the Mediterranean. The modern West African fauna is today isolated from that of other parts of the marine tropics. Main conclusions Taxa now entering the Mediterranean through the Suez Canal are re‐establishing a link with the IWP that last existed 16 million years ago. This IWP element, which evolved under oligotrophic conditions and under a regime of intense anti‐predatory selection, will continue to expand in the increasingly warm and increasingly oligotrophic Mediterranean. The IWP source fauna contrasts with the tropical West African biota, which evolved under productive conditions and in a regime of less anti‐predatory specialization. Until now, the post‐Pliocene West African source area has been isolated from the Mediterranean by cold upwelling. If further warming should reduce this barrier, as occurred during the productive and warm Early Pliocene, the Mediterranean could become a meeting place for two tropical faunas of contrasting source conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号